10 research outputs found

    Influence of wall heterogeneity on nanoscopically confined polymers

    Get PDF
    We investigate via molecular dynamics simulations the behaviour of a polymer melt confined between surfaces with increasing spatial correlation (patchiness) of weakly and strongly interacting sites. Beyond a critical patchiness, we find a dramatic dynamic decoupling, characterized by a steep growth of the longest relaxation time and a constant diffusion coefficient. This arises from dynamic heterogeneities induced by the walls in the adjacent polymer layers, leading to the coexistence of fast and slow chain populations. Structural variations are also present, but they are not easy to detect. Our work opens the way to a better understanding of adhesion, friction, rubber reinforcement by fillers, and many other open issues involving the dynamics of polymeric materials on rough, chemically heterogeneous and possibly ‘‘dirty’’ surfaces

    Stabilization of Cultural Innovations Depends on Population Density: Testing an Epidemiological Model of Cultural Evolution Against a Global Dataset of Rock Art Sites and Climate-Based Estimates of Ancient Population Densities

    Get PDF
    Demographic models of human cultural evolution have high explanatory potential but weak empirical support. Here we use a global dataset of rock art sites and climate and genetics-based estimates of ancient population densities to test a new model based on epidemiological principles. The model focuses on the process whereby a cultural innovation becomes endemic in a population; predicting that this cannot occur unless population density exceeds a critical threshold. Analysis of the data; using a Bayesian statistical framework; shows that the model has stronger empirical support than a proportional model; where detection is directly proportional to population density; or a null model; where rock art detection ratios and population density are independent. Results for different geographical areas and periods are compatible with the predictions of the model and confirm its superiority with respect to the null model. Re-analysis of the rock art data; using a second set of independent population estimates; again supports the superiority of the model. Although the available data is sparse and the analysis cannot exclude all possible sources of bias; this is evidence that population density above a critical threshold may be a necessary condition for the maintenance of rock art as a stable part of a population’s cultural repertoire. Methods similar to those described can be used to test the model for other classes of archaeological artifact and to compare it against other models

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Numerical approximation of the unsteady Navier-Stokes equations with an application to the flow past a square cylinder

    No full text
    The goal of this project is to numerically solve the Navier-Stokes equations by using different numerical methods with particular emphasis on solving the problem of the flow past a square cylinder. In particular, we use the finite element method based on P2/P1 elements for the velocity and pressure fields for the spatial approximation, while the backward Euler method (with semi-implicit treatment of the nonlinear term) for the time discretization. We firstly test the numerical schemes on a benchmark problem with known exact solution. Then, we discuss in detail the advantages, in terms of computational costs, in using the algebraic Chorin-Temam method with additional implementation improvements. We finally investigate the problem of the two-dimensional flow past a square cylinder, focusing our attention on the range 0.1-300 for the Reynolds number (Re). We describe the two different regimes associated to the steady and the unsteady flows and we remark as the latter is in fact due to a Hopf bifurcation of the system. We also discuss the relation between the Strouhal and Reynolds numbers concluding that the Strouhal number attains its maximum value in the range 169-170 for the Reynolds number. In particular, a cubic model is proposed, showing very good matching with observed data and a better fitting than other models available in literature

    Supervised Learning With Perceptual Similarity for Multimodal Gene Expression Registration of a Mouse Brain Atlas

    Get PDF
    The acquisition of high quality maps of gene expression in the rodent brain is of fundamental importance to the neuroscience community. The generation of such datasets relies on registering individual gene expression images to a reference volume, a task encumbered by the diversity of staining techniques employed, and by deformations and artifacts in the soft tissue. Recently, deep learning models have garnered particular interest as a viable alternative to traditional intensity-based algorithms for image registration. In this work, we propose a supervised learning model for general multimodal 2D registration tasks, trained with a perceptual similarity loss on a dataset labeled by a human expert and augmented by synthetic local deformations. We demonstrate the results of our approach on the Allen Mouse Brain Atlas (AMBA), comprising whole brain Nissl and gene expression stains. We show that our framework and design of the loss function result in accurate and smooth predictions. Our model is able to generalize to unseen gene expressions and coronal sections, outperforming traditional intensity-based approaches in aligning complex brain structures

    Solvent-free phenyl-C61-butyric acid methyl ester (PCBM) from clathrates: insights for organic photovoltaics from crystal structures and molecular dynamics

    No full text
    The first solvent-free crystal structure of PCBM, an organic semiconductor widely used in solvent-free nanocrystalline films in plastic solar cells, is reported and its relevance to structure–property relationships discussed. The PCBM structure, obtained from o-dichlorobenzene solvates by solvent abstraction, was solved using powder diffraction, demonstrating this possibility for functionalized fullerenes

    A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19

    No full text
    SARS-CoV-2 started spreading toward the end of 2019 causing COVID-19, a disease that reached pandemic proportions among the human population within months. The reasons for the spectrum of differences in the severity of the disease across the population, and in particular why the disease affects more severely the aging population and those with specific preconditions are unclear. We developed machine learning models to mine 240,000 scientific articles openly accessible in the CORD-19 database, and constructed knowledge graphs to synthesize the extracted information and navigate the collective knowledge in an attempt to search for a potential common underlying reason for disease severity. The machine-driven framework we developed repeatedly pointed to elevated blood glucose as a key facilitator in the progression of COVID-19. Indeed, when we systematically retraced the steps of the SARS-CoV-2 infection, we found evidence linking elevated glucose to each major step of the life-cycle of the virus, progression of the disease, and presentation of symptoms. Specifically, elevations of glucose provide ideal conditions for the virus to evade and weaken the first level of the immune defense system in the lungs, gain access to deep alveolar cells, bind to the ACE2 receptor and enter the pulmonary cells, accelerate replication of the virus within cells increasing cell death and inducing an pulmonary inflammatory response, which overwhelms an already weakened innate immune system to trigger an avalanche of systemic infections, inflammation and cell damage, a cytokine storm and thrombotic events. We tested the feasibility of the hypothesis by manually reviewing the literature referenced by the machine-generated synthesis, reconstructing atomistically the virus at the surface of the pulmonary airways, and performing quantitative computational modeling of the effects of glucose levels on the infection process. We conclude that elevation in glucose levels can facilitate the progression of the disease through multiple mechanisms and can explain much of the differences in disease severity seen across the population. The study provides diagnostic considerations, new areas of research and potential treatments, and cautions on treatment strategies and critical care conditions that induce elevations in blood glucose levels
    corecore